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A one-dimensional porous body is represented by a system of iden- 
tical axisymmetric channels in a continuous medium. The tempera- 
ture gradient coincides with the channel axis. To increase thermal 
resistance, a gas or liquid is passed through the channels. The heat 
flux is determined. This is possible only by calculating the tempera- 
ture field, which is necessary, in addition, for drawing conclusions 
about the behavior of the material. Steady-state heat transfer is con- 
sidered. The model is such that it is sufficient to examine an elemen- 
tary ceLl-an individual channel. General assumptions: Iocal thermody- 
namic equilibrium, gray-body and diffuse radiation, opaque walls, 
and isotropic scattering. 

1. Equations for temperatures in opening and wal l  cross seettom, 
The temperature is averaged over each cross section. We introduce the 

variables 
l . ~ = f k d  l 

l 

Here, l is the channel length read from end i (x = 0,T= 0) (Fig. 
1);for end 2, x = x o ,  "r= T 0 ; D i s t h e c h o s e n c h a n n e l w i d t h ; k = a +  
+ g is the attenuation factor; and a and g are the absorption and scat- 
tering factors of a ray in the medium. It is convenient to introduce the 
general variable u, which means x or r, depending on the form of the 

functions. 
We introduce the functions Wuu'[U' - ul: the probability that an 

energy quantum that passes through cross section F(u) will directly 
strike cross section F(u'). Direct flow includes the quanta that have not 
interacted with the medium or the walls. In a channel of variable 
cross section, Wuu, is a function of the flow direction. When the 

fluxes in both cross sections have identical angular distributions, then 

F (u) Wu~, = P (u') W~,~ (1.17 

The first subscript refers to the quantum-source cross section; 
eu'ulU' - u[du is the probability that an energy quantum that passes 

through cross section F(u') will directly strike layer du, which is 
formed by cross sections F(u) and F(u + du), the walls of the channel, 
and be absorbed or scattered by the medium and reflected from the 
wails in this layer. Further, we use the distribution 

q ~ u . u l u ' - - u [ d u = q ) u , F l z ' - - x l d z + q ) u . V ] T ' - - ~ : ] d ~ ;  (1.27 

here F and V indicate the lateral surface and volume of layer du; 
~Opu,]U' - u[ is the probability that an energy quantum emitted by the 

channel wails in layer du will directly strike cross section F(u'); 
~Vu'lU' - ul is the probability that an energy quantum emitted in the 
volume of layer du will directly strike cross section P(u'); and 

VFp,[X' -- x]dx' is the probability that an energy quantum emitted by 
the channel walls in layer du will directly strike the channel wails in 
layer du'. The probabilities VFv,Ir '  - r ldr ' ,  VvF,lx' - xldx', and 
V v v , l r '  - r l d r '  have similar meanings. According to the phenome- 
nology and definitions, we have 

ow~,~,  I u" -- u ] 
Ou. u [ u" - -  u'%du = Ou du (~'>.), 

OWu.ul u" - -  u I (1.3) 
rbu, I u" - -  u ] du = - -  Ou du (u" < u) . 

x = O  

tt=O 
s o 

Fig. I 
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q~w, i u ' - u ] :  ~l~ (u') c P ~ ' v l ~ - -  < I 

Here, S(x) = dFb(X)/dx is the inside perimeter of the channelmul- 
tiplied by D; Fb(X) is the inside lateral surface of the channel; 

when u'  > u 

09F~. ] "' -- u I 
VFu" I u" - -  u t du' =: Ou" du', 

O~vu" i u" - -  u I 
V w ,  ] u" - -  u I du" = Oa" du" , 

when u' < U 
a~pF u, [ u" - -  u ] 

V F~, [ u" - -  u I du" - -  Ou" du" 

0 9 w ,  ! u" - -  a l 
Vw,,  [ u" - -  u [ du" - -  Ou" du" , (1.5) 

The distribution of VFu, and Vvu, over the surface and volume of 
layer du' has a form similar to that of (1.2): 

VFu. l u ' - - u l d u ' = V F F ,  l X ' - - z l d x "  + g l ~ j l ~ ' - -  TldT' , 
(i.6) 

Vv~,  t u' - -  u ldu" = V v F ,  I s ' - -  z f  d~' + V v v ,  I ~ " -  r ]  tiT'. 

According to the reciprocal relation 

,%- (~) 
-- ~ VVF' VF. F - -  ~(~) VFF" VF. v . .  

(1.7) 
F (u) V 

V V ' F - -  4 ~ ' )  V r v  "' VV'V = F (u') w:" 

In Eqs. (1.3)-(1.7), which relate W, r ~o, and V, the principal 
value is chosen as W. Values of this type are called angular coeffi- 
cients; they are normalized over the interval [0,1].  A great deal of 
study has been devoted to them. 

The phenomenoIogical integral equations of energy transfer have 
the foLlowing form: 

GT* ('0 -- go (r) 4- --  ~ -- qefflgVl (u) @ qeff~pV2 (u0 --  u) q- 

x.0 

-{- f qeff(x') VVF" i x " - - x  I dx" + 
o 

+ f :~B~r (<) Vvv. t T' --  �9 [ dr' ; (1.8) 
o 

~To 4 (x) -- qo - -  --~- -j- qefflqgFt (u) -}- qefr2(p/~ (u0 -- u) + 

xo 

f qeff(x') VFF, [ - -  X -~ 
Z' I dx" 

o 

+ t ZtBeff (V') VFV' l v' -- r [ dr' ; (1.97 
0 

go : g  --  div (eywnT --  %,n grad T) 

So 6D 
qo ~ qres-~-" + "~- div (~,o n grad To) (i.io7 

I--A 
qeef (~') = ~T~ (~') --  - - W -  qo ; 

13 
nBeff(T'7 = ~T{ ('~.') --  ~ g o  . (1,117 
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Here, T and T 0 are the temperatures of the medium and wall, 
respectively; o = 5.68 �9 10-s W/m z . deg*; A is the emisSivity for the 
inside surface of the channel; go was taken from [1], where it  is called 
the reduced heat  release; g [ W / m  s] is the density of chemical  heat  
release in the medium; e, T, and w are the specific heat,  density, 
and velocity of the medium; n is a unit vector along the u-axis; k .  
and k0 are the thermal conductivity coefficients of the medium and 
wall; qres [ w/mz]  is the density of the resultant flux on the outside' 
surface of the channel,  which is positive if the flux enters the wall; 
for an e lement  (channel) of the porous body qres = 0; S o is the outside 
perimeter of the channel multiplied by D; 5Ira 2] is the wall cross sec- 
tion. All values in these equations can be functions of the coordinate. 
The effective flux densities at the ends of the channels qeffl and qeffz 
remain to be explained, Joint solution of the equations for the incident,  
characteristic,  and effective fluxes gives 

Xa 

qeff~--~ {qel + qe2 RIWI'~ (uO) "{- R1 I qeff(x) I~)IF (x) dx -}- 
o 

+ B~ I nBeff('r) ~rV (~)d~ + 
9 

Xo 

0 

-{- S,tBeff(,)~02V 0 r 0 -  t ) d , ] } / [ l -  RIR2W12W21]. 
o 

i(1.12) 

qoff~='{q,, + qolR, W,~ (~o) + 
go "to 

@ 1{2 f qef f (x)  l l ) 2 F ( X ~  R2 f ~Beff(~)X 
o o 

go 
>( (])2V (~0--T) dT-q-nlR. .W:n[!  qeff(:r) (DIF(X) dx+ 

"I: o 

+ S ~Beff(~r (x) dx 3 ) / [ l - -  I~IR2WI2W21]X 
0 

X qcl = (1 - -  B~) ~T~', qc~ : (1 - -  R~) zT*. ~ ; (1.137 

here qeff(x) and 7rBeff(r) should be replaced by the right sides of Eqs. 
(1.117; Rt and R z are the reflection factors (or albedos) of the channel 
ends; T 1 and Tz are the temperatures of the ends. Equations (1.8), (1.9), 
(1.127, and (1.13) make up a system with unknown T, T 0, qeffl '  and 
qeffz, from which it is easy to determine any characteristics. 

2. Single equation for R = t~ = 0. In this case, we can,  with the 

most justification, let  T = T o = T(u). After their rnul~plication by 
4F(u) and S(x), with allowance for (1.4)-(1.6),  Eqs. (1.87 and (1.9) 

take the form 

F (~) 
4F (u) sT 4 = ~ go -[- 

+ g . lF  (0) OtV (u) + q,o~JF (Uo) ~2V (uo - -  u) -~- 

~ T '  (u')  F (,,') I Oa, , , .~  i u' - -  u I 
Ou" 1 du' , + 

,) I 
0 

S (x) ~T~ = S (x) qo + 

+ q,lF (0) (Die (u) + q,~F (Uo) ffP2F (uo - -  u) + 

+ f  z T ' ( u ' ) F ( : ' )  O*~"~'l~'--ulou' I d~'' 
o 

where q,1 = ~Tx 4, q,2 = (rTa2[ 

These equations are multiplied by d r  and dx, respectively, and 
then combined. The result is transformed with the aid of (1.2) and 
divided by du. Then Eq. (1.17 is used. It is useful to introduce the 

symbols 

With 

t F 8 (~) 7 

t [ d~ s n(x) dx]. 

dr S (x) dx 
4 ~ "+ F (u) du - -  2q~uu (0), 

which is valid for any "smooth" channel,  we obtain the final result 

0 
2e~T~q)uu (0) = G (u) + -~-  [L (u) n grad T] - -  

0 OW m (u) 
- -  -fie [c (u) T (u) w (u) nTl  - -  q,r ~ + 

OWu2(u~  + ~ z T 4 ( u ' ) [ ~ W u u ,  l u ' - - u l l d u ' .  (2.1) 
q *~ Ou 

o 

The value Wuu'tU' -- ul,  which is directly calculable, is a function 
of the angular distribution for the radiation in crosS section F(u). Here, 
however, it figures as the double integral of the function V and is 
therefore determined by this functions, regardless of the actual angular 
distribution. According to the conditions of the problem, V is calcu-  
lated for diffuse radiation of the surfaces and a spherical radiation in- 
dicatrix for a volume element .  Here, W is the same as for isotropic 
flux in a cross section, and the use of (1.17 is valid. 

The flux equation is obtained from (2.1) by multiplying it by du 
and integrating in the interval [0, u] 

f G(u) du + 3"(u)ngrad T l - - c T w n T  + q . l t t - - W u r  (U)]-- 
0 0 0 

--" q,~. [W12 ( u o ) -  W ~  ( u o -  u)l - -  

- f oT,  ( .)  d w  (u) - -  f ~r ,  (u') o w  ("o~'-- ~') d ~ ' +  
o o 

uo 
q-  I 6T4 (u') OW (u'ou,-- u) du' = 0 . 

1. 
(2.2) 

In this equation, the total fluxes caused by all types of heat  trans- 
fer are distinguished 

u~ 
(0) : q,~ - -  q ,2W!~ (uo) - -  f zT~ (u) dW (u) + q 

o 

(") + c (0) T (0) w (0) nT  (0) - -  L (0) d f  I=o ' 

q (u) = q , lWui  (u) - -  q,2Wu2 (uo --  u) -~- 

i OWu~, (u - -  u') 
~T 4 (u') Ou" du' 

0 

i ~ OWuu, (u" - -  u) 
- -  sT 4 (u') Ou" du" + 

u 

+ c (u) z (u) w (u) n T  (u) - -  L (u) dd~ . 

According to the last three equations, 

q (u) - -  q (0) = f a (u) du,  
o 

or, after differentiation, 

dq (u) dq (u) du 
du - -  C (u)' dl = G (U) -dT = g, (u) , 

where g , [ W / m  s] is the specific power of heat  release by external and 
internal sources. For the three-dimensional problem, we have divq = 
= g , ,  which this symmetric  with respect to the already known relation 
divqrad = go, where qrad[W/m 2] is the radiant flux. 
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Equation (2.2) can be further simplified by eliminating the last 
derivative, if we let X = const. For this, it is again multiplied by du 
and integrated: 

~z ~z 

0 0 

= q . i  l iVut  (u) du - -  q.2 f Wu2 (Uo - -  u) du ~- 
o o 

~zo 

o o 

In view of the multiplicity of independent parameters, a general 

solution of these equations, which is possible in numerical form, is 
advisable only in a specific practical problem. It will be useful to 
examine a number of particular solutions. 

3. Effect ofseatteting on temperature field in medium. In (1, 11.2), 

the physical meaning of Beff is explained by the equation ~rBef f = 
= oT~ff, where Tef f is the effective temperature, which is equivalent 
to the temperature of a volume elemnt that emits the same flux but as 
a characteristic, completely thermal flux. Let the conditions at the 
boundaries of the channel, the field k, and go be given; only B/k 
varies. Then we have Tel f = const. This theorem is proven logically. 
By convention, the total heat release is given, and a is the reemission 
coefficient. The flux distribution and the fluxes themselves are indif- 
ferent to origin: reemission or scattering. Rewriting (1.11.2) as 

�9 r .A_ 
z T  ~ = 6 T e f  f t ~ go ( 3 . 1 )  

gives a function of one variable T($/k). The result is noteworthy: a) 
when go = 0, the temperature is independent of the relationship of a 
and ~; b) when go ~ 0, the effect of B/k is determined by the sign of 
go; c) wheng/k  ~ 1, T ~ ,o or T --, 0, depending upon the sign of go. 
It is obvious that when B/k = 1, the conditions are singular. Here, the 
radiation transfer is autonomous, i .e . ,  independent of heat conduction 
and convection. The relationship between T and Tef f or the radiant 
temperature disappears. 

Our condition of constancy for the field go is possible only when 
heat conduction or convection is insignificant. In fact, when ~/k --~ 1, 
we have tg0t --* o. The opposite case, when heat conduction and con- 
vection practically completely determine the temperature field, ad- 
mits of simple analysis. Then in (3.1) we have T ~ const, but [go[ "* 

0 when g/k ~ 1. We obtain the function Teff(g/k), where the roles 
of the signs of go are changed. The signs of go are easily established 
for the beginning and end of the channel. This analysis remains valid 
for any scattering indieatrix. In a number of cases, its effect is smaller 
by one order of magnitude than the effect of ~/k [2]. For large pard- 
cles and small optical thicknesses, the indicatrix can be represented as 
spherical and, in part, maximally extended, so that its effect is taken 
into account directly. 

4. Channel without divergence of total flux. Heat conduction and 
radiation, C h a n n e l  ends  black. If there are no combustion processes, 
phase transitions, etc., in the porous b~ody, the divergence of the total 
energy flux is zero. Combined energy transfer by heat conduction and 
radiation (convection is absent) when B = 0 is analyzed below. An 
approximation of the independent application of fluxes of heat conduc- 
tion qc and radiation qrad that is used in practice [3] is examined. It 
follows from general considerations that as the channel wads "whiten" 
the radiant flux becomes all the more independent. When R = i and 
X, = 0 (for the medium) it is completely independent; the same occurs 
when ~ k  = 1 and R = 1. The case when 15 = 0 and R = 0 is less favor- 
al~le. Also less favorable is the approximation of a plane layer in a 
homogeneous medium (degenerate channel), since the interaction of 
heat conduction and radiation is strongest here. Here we have numeri- 
cal solutions of the exact equations [4]. The independent heat-conduc- 
tion flux is calculated by 

~k 
qc/oT~,=4x~(t__O~)(O.= T~ N ~ )  (4.1) 

"~-1 ~. = . 

The independent radiation flux is 

qrad/zT14--D (1 --  0~4), (4.23 

where D is the probability that an energy quantum that strikes a layer 
will pass through it directly or after reemission. 

Comparison of the sum of fluxes from (4.1) and (4.2) with the exact 

values is demonstrated in [3]. The maximum error is 11~ when qc 
and qrad are comparable. The approximate calcniation gives an under- 
stated result. It was noted above that for channels the :method gives a 
smaller error and is, on the whole, acceptable. According to the de- 
finition of the temperature field, there is no method that is equivalent 
in generality and accuracy. 

6, Effect of optical constants on channel ends (continuation of 
section 4)~ Specific analysis is also possible for a plane-parallel layer. 
The number of arguments increases to five: r 0, 0 z, N, A t, and Az; 
therefore, approximate analytic relations are very desirable. An in- 
dependent calculation of fluxes qc and qrad was attempted in [3] under 
these conditions. Solutions from the exact equation of [5], obtained 

when A l = A 2 = A, were used there. The discrepancy, however, is now 
too great--up to 250%. An approximation formula for small parameters 

N is given below. 
First, we should discuss the radiant-flux formula [6, 7] 

1 - -  0~. 4 t - -  0~ 4 
qrad/~ r __ R1/Alq_R~/A2_~_t/D , (5.1) 

where r is the total resistance to radiant flux. The accuracy of the 
formula is determined by D. Table 1 gives the most accurate D values 
for various sources. Evidently, D 1 (according to [8]) when "r 0 -< 4 is 
somewhat overstated. D4 (according to [10]) is published for the first 
time in explicit form. The D values in the last column were obtained 
by processing ali data; they are used in subsequent calculations. A 
good approximation is given by 

D = {i + 0.75 '~o @ 0.06 [t --  exp (--3 Xo)]} -1. 

It follows from calculations [8, 11] that qrad is not highly sensitive 
to the temperature field in the layer. Therefore, the radiant flux can 
be calculated by (5.1) for any N. To show in pure form the error of the 
formula proposed below, q~ c is taken not from (4.1) but from calcula- 

tions of the exact equation when A 1 = A 2 = A - i .  e., from the differ- 
ence between q and qrad" The main thesis is that when the heat con- 
duction of the medium is low, the temperature and its gradient at the 
wall are determined by the radiant temperature. At small N, there- 
fore, 

T a -  Tg 

qc = q c ~  T x - - T  b ' (5.2) 

where T b and Tg are the radiative temperatures at wad 1 for black and 
gray walls. Assuming that T b and Tg are completely determined by 
radiation, we use the system of equations 

P = T b 4  - -  T~  ~ 6 T g  ~ - -  qe f f~  

T ]  4 - -  T 2  ~ q e f f l  - -  qe f f~  ' q e f f l  = 6 T l a  - -  R b d l l q r a d '  

qef f~  = ~T24 • R 2 A ~ l q r a d  ' 

According to [11,12], 

0.5 - -  E~ (To) -k ~o [i --/:~. (~o)] 
P = t q- To -- exp (-- Vo) 

A more exact formula is given in [11]. The value qrad is calcu- 
lated by (5.1). Finally, the thermal flux is determined by 

q ~ qmO6. Af_ q r a d .  

( ~ * =  I--[02~@(t--02~)r-l(P/D-}-R2/A2)]~ 4)p]4 . (5.3)' 

The value 5, indicates the increase in heat-conduction flux due 
to the presence of radiation. Now the effect of A 1, Az, Or, and q is 
established by e~6mentary analysis, wherein A I and A~ have opposite 
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Table 1 

Comparison of D-Values for a Plane-Parallel Layer 

x, Dzfrom['] D~from['] Dtfrorn['] D4from[ I~1 D 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
t 
t .5  
2 
2.5 
3 
4 
5 
6 
7 
8 
9 

t0 

9159 9t58 
8496 
794t - -  
7467 - -  
705t 7043 
6683 
6354 
6057 
5789 - -  
5543 5532 

3905  3896 

30ts 
246t 2450 
2078 - -  
1798 t798 
1584 - -  
141r t416 
128( 
t16~ t ~ 8  

9t57 
849t 
7934 
7458 
7040 
6672 

6046 

5532 
4572 
3900 
3401 
3016 

7936 
7459 
704t 
6663 

9t58 
8492 
7936 
7459 
704t 
6672 
6343 
6046 
5778 
5532 
4572 
3900 
340t 
3016 
2458 
2076 
t798 
1584 
1416 
t280 
1168 

effects. To cheek (5.3), we used the results of [4,5],  where 0.04 is 
taken as the minimum value of N. The results are presented in Table 
2. When T0 = 1, Oz = 0.5, and A = 0.5, an anomaly is noted. This is 

evidently explained by inaccuracy of q~ c. As.T0 increases, the error 
increases, due to the decreasing role of radiation. The results are 

better if the fact that heat conduction reduces radiant flux is taken into 
account. As is apparent, (5.3) is applicable when N < 0.01 and for 
comparatively thin Myers. The error increases appreciably, however, 
when q~ c from (4.17 is used. Unfortunately, in a study of the effect of 
A 1 and A 2 on heat transfer in channels at small N, a plane-parallel 
layer (as a degenerate channel) gives the least error, where, accord- 
ing to the theoretical premises adopted, the closest interaction of the 
material with the radiation must occur. But in a channel, the lateral 
surfaces intensify heat conduction. Finally, in (5.1), as applied m a 
channel, the calculation of r should be dealt with separately. 

6. Resistance to radiant flux by an axisymmetric charmel with 
pleeewise smooth profile and adiabatic wails. In the preceding section, 
it was shown that the radiant flux can be assumed to be independent. 
This is equivalent to the condition of wall adiabaticity, under which 
the resistance to radiant flux is determined most simply. The channel 
in Fig. 1 shonid now be considered one of many sections connected in 
series. The transmission coefficient of the i-th section in the positive 
direction is D i. Its meaning is similar to the meaning of D for a layer 
(see Section 4). In the opposite direction, D i is calculated from the 
reciprocal relation. A solution of the problem in the case of molecular 
flow was published earlier [13], where the general method was com- 
pared with a number of others by the example of two sections. By 
analogy, we obtained the following elementary resistances relative to 

the input cross section F 1 (input to first section): 

a) resistance of emitting end 
b) resistance of end 2 (energy sink) 

(As is apparent, even when V l = F z, the resistances of the ends have 
asymmetric formulas, which contradicts the definition in [14], where 
two planes are considered.) 

c) resistance of i-th section of channel (1/D i -- 1) F1/F i, where F i 
is the cross section of the input to section i; 

d) resistance of aperture-input to i-th section 
F~ F~-I -- Pi 

F i E l -  1 ' 

where Fi- 1 is the cross section of the adjacent (i - 1)-th section on the 
adjacent end. When F i = Fi. 1 and F i > Fi. 1, the resistance of the 
aperture is zero. 

On the basis of the continuity of all channel elements, their re- 
sistances are added. It is easy to obtain a corollary of the second law 
of thermodynamics: the reciprocal relation 

r + / F  I =  r _ / F z ,  

where r+ and r_ are the channel resistances in the forward and reverse 
directions. The error of such a general example is determined by the 
fact that D i is customarily calculated for diffuse flux entering the sec- 
tion. However, for all sections except the first it is, generally speak- 
ing, not diffuse. For two circular sections of equal length and diameter 
with a transparent medium, the method has been verified [15]. A 
maximum error of 5.6% was obtained for sections of medium length 
( l i d  = 2). Approximate calculation gives a result that is clearly over- 

stated (for resistance). 
7, Convection. According to the conditions of the problem, only 

forced convection is of importance. When k = 0 and A l = A z = 1, Eq. 
(2.1) is solved in an approximation of a plane-parallel layer. The 
radiation that impinges on the medium from the walls is taken into 
account indirectly by the field of the specific power of heat release g, 
where it is assumed that g = const (see [16] on two methods of allow- 
ing for boundary conditions). Figure 2 shows the variation of the tem- 
perature field due to motion of the medium when wn = w, a = 0.2 m -1, 
T O = 2, T z = 0, T 1 = 350 ~ K (here, T 1 is the temperature of the me- 
dium entering into the layer), and g/4~ra = 46.274 kW/m z, The value 
47racyw/g is equal to zero (curve a), 1.508 �9 1O -s deg -I (curve b), and 
2.766 �9 l0 -s deg -1 (curve e). Under these conditions, even for a gas 
(cy small) the medium moves with low velocity. However, motion 

greatly affects the temperature at the beginning of the layer. Under 

a, r 

/#' \ 

Fig. 2 

Table 2 

Comparison of Approximate Thermal Fluxes from (5.3) (q'/oT~) with Results from Exact 

Equation [5] (q/oT~) for N = 0.01 and A 1 = Az = A 

A ~o Oz qc/oTt ~, 

0.1 0.5 0.215 t . t t  0.2385 0.309 0.5475 0.524 t.04 
1 0.5 0.078 1.65 0.1288 0.248 0.3768 0.338 t . l t  

0.5 t 0.t 0.102 t.54 0.t848 0.274 0.4588 0.390 1.t8 
t0 0.5 0.012 6.38 0.0765 0.084 0.1805 0.104 t.74 

0.i 
0it 
:0 

0.5 
0.5 
0.t  
0.5 

0.2t5 
0.078 
0.i02 
0.012 

t.20 
2.23 
2.26 
8.76 

0.258 
0.174 
0.230 
0,105 

0.049 0.307 
O. 047 0.22t 
0.050 0.280 
0.035 0.140 

0. 267 
0.156 
0.222 
0.090 

t .t5 
t.42 
t .27 
t.56 
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these conditions, there are no variations at the end of the layer. The 
conclusions are fully transferable to a channel of constant cross sec- 
tion. An approximate solution is given in [17] for an adiabatic layer 
with direct allowance for the boundary conditions. 
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